Normal view MARC view ISBD view

Centrifuge study of a retrogressive seepage-triggered landslide in silty sand slopes

By: Rajabian, Ahmad.
Contributor(s): Viswanadham, B. V. S.
Publisher: USA Springer 2022Edition: Vol.52(6), Dec.Description: 1313-1324p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian geotechnical journalSummary: A landslide can consist of multiple failures advancing upslope retrogressively. This paper investigates the mechanism of a seepage-induced retrogressive landslide in a silty sand slope and assesses the accuracy of the limit equilibrium analysis in predicting the stability and sequential failure surfaces at retrogressive failures. A centrifuge model test was performed on a 12-m-high silty sand slope with an inclination of 45° at 50 g using a 4.5 m radius large beam centrifuge facility available at IIT Bombay. Seepage was generated using an in-flight simulator, and the behavior of the model slope was monitored. Three retrogressive slides were observed in the slope model when the seepage flow was established. The results indicated that the time interval between initial and second failure episodes is more prolonged than between second and last failure episodes. The length of sliding surfaces decreases when the landslide retrogresses, although their depth remains roughly unchanged. In addition, the slope with an inclination of 63.4° (2 V:1H) had significantly higher values in normalized depth, depth of displaced mass, and retrogression distance than those for 45° slope inclination. The limit equilibrium approach can estimate the stability at pre-failure stages, provided that pertinent geometry and loading conditions are satisfactorily incorporated.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2023-0002
Total holds: 0

A landslide can consist of multiple failures advancing upslope retrogressively. This paper investigates the mechanism of a seepage-induced retrogressive landslide in a silty sand slope and assesses the accuracy of the limit equilibrium analysis in predicting the stability and sequential failure surfaces at retrogressive failures. A centrifuge model test was performed on a 12-m-high silty sand slope with an inclination of 45° at 50 g using a 4.5 m radius large beam centrifuge facility available at IIT Bombay. Seepage was generated using an in-flight simulator, and the behavior of the model slope was monitored. Three retrogressive slides were observed in the slope model when the seepage flow was established. The results indicated that the time interval between initial and second failure episodes is more prolonged than between second and last failure episodes. The length of sliding surfaces decreases when the landslide retrogresses, although their depth remains roughly unchanged. In addition, the slope with an inclination of 63.4° (2 V:1H) had significantly higher values in normalized depth, depth of displaced mass, and retrogression distance than those for 45° slope inclination. The limit equilibrium approach can estimate the stability at pre-failure stages, provided that pertinent geometry and loading conditions are satisfactorily incorporated.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha